If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=256
We move all terms to the left:
3x^2-(256)=0
a = 3; b = 0; c = -256;
Δ = b2-4ac
Δ = 02-4·3·(-256)
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{3}}{2*3}=\frac{0-32\sqrt{3}}{6} =-\frac{32\sqrt{3}}{6} =-\frac{16\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{3}}{2*3}=\frac{0+32\sqrt{3}}{6} =\frac{32\sqrt{3}}{6} =\frac{16\sqrt{3}}{3} $
| 15.00+0.20x=75 | | 4(4x+3)=3x+17 | | 0.5÷x=0.2285714286 | | (6x-8)+(5x+1)=42 | | 16x=12(9) | | 8(x-5)=4x+2x+10 | | 4(x+5)-(4x+20=0 | | 56/8(2^2+1)=x | | 1/5(x+4)=1/10(x+6) | | 7x+15-11=3(x+4) | | (12=-7f-9.) | | (6x+7)+(9x-56)=180 | | 2p=7(9p+2) | | 25+10m=50+5m | | −4x −5=−8 | | 1-4r-r=-11-8r | | 5.4=0.3×(x+8) | | -22=-2p | | 25+10m=50+5 | | 3+22=(1+8)+2x7 | | d-2=9 | | 12+8x+5x=-2x+102 | | -92=4(1+3v) | | 16x=9(12) | | 1.2(4)=w | | 120+10m=4m+150 | | m+3.9=15.35 | | 6x+2=7(x+6) | | 130+3+x+41+31+x=180 | | -x/3=-33 | | 3/4y–5=70 | | 3422=(x)22000000 |